Advances in Human Aspects of Transportation

Proceedings of the AHFE 2020 Virtual Conference on Human Aspects of Transportation, July 16–20, 2020, USA
Advances in Human Aspects of Transportation

Proceedings of the AHFE 2020 Virtual Conference on Human Aspects of Transportation, July 16–20, 2020, USA
Contents

Traffic Behavior and Driver Performance

Determining Infrastructure- and Traffic Factors that Increase the Perceived Complexity of Driving Situations 3
Anika Boelhouwer, Arie Paul van den Beukel, Mascha C. van der Voort, and Marieke H. Martens

Development of Statistical Models for Predicting Automobile Seat Fit of Drivers ... 11
Baekhee Lee, Kihyo Jung, and Jangwoon Park

How Personal Identity Influences the Driving Behavior-Correlation Analysis with Naturalistic Driving Data 16
Caecilia von Lienen, Jana-Sophie Effert, Fabian Schwarzenberger, Lars Hannawald, and Guenther Prokop

Assessment of Driver Distraction Caused by Social Networking Activities Using the Smartphone: A Driving Simulator Study 24
Fabrizio D’Amico, Alessandro Calvi, Chiara Ferrante, and Luca Bianchini Ciampoli

Personalized Driver State Profiles: A Naturalistic Data-Driven Study ... 32
Arash Tavakoli, Mehdi Boukhechba, and Arsalan Heydarian

Human Car-Following Behavior: Parametric, Machine-Learning, and Deep-Learning Perspectives 40
Saeed Vasebi, Yeganeh M. Hayeri, and Jing Jin

Alert! Automated Vehicle (AV) System Failure – Drivers’ Reactions to a Sudden, Total Automation Disengagement 49
Sarah El-Dabaja, Deborah McAvoy, and Bhaven Naik
Traffic Behavior Analysis Using Mobile Base Station Data 56
Juyoung Kim and Dongho Kim

Driver’s Visual Attention Analysis in Smart Car with FHUD 68
Yanjun Zhang, Tian Yang, Xia Zhang, Yongjin Zhang, and Youchao Sun

Human Machine Interaction

How Important is the Plausibility of Test Scenarios Within Usability Studies for AV HMI? 77
Nadja Schömig, Katharina Wiedemann, Frederik Naujoks, Sebastian Hergeth, Andreas Keinath, and Alexandra Neukum

Employing Natural Finger Positioning Strategy for Improving Blind-Positioning of Steering Wheel Mounted Switches 85
T. K. Philip Hwang, Yao-Tin Huang, and Pin-Chieh Kuo

Towards a Truly Cooperative Guidance and Control: Generic Architecture for Intuitive Human-Machine Cooperation 92
Marcel Usai, Ronald Meyer, Hiroshi Nagahara, Yusaku Takeda, and Frank Flemisch

Researchers and Public Views on Electronic Sideview Mirror System (ESMS) in the 21st Century Cars 99
Bankole K. Fasanya, Skandip Anand, and Guna Sreeja Kallepalli

Future Transportation Service Technology Platform System Based on Internet of Vehicles 107
Jia-xin Liu, Zi-yun Li, and Ying Cao

Impact of Speedometer Forms on Integration Task Performance for Train Driving 112
Chenchen Gao, Weining Fang, Ke Niu, and Jianxin Wang

New Technology Implementation in High-Risk Organizations - The Application of HRO Principles in New Technology Implementation in Railroad Industry 120
Yalda Khashe and Najmedin Meshkati

Eye Movement Analysis of Interactive Interface of CRH High-Speed Train Braking Test 127
Jun Li and Jinyi Zhi

Research on Optimal Design of Metro Driving Interface Based on Driver’s Operating Characteristics 133
Yang Du, Jin-Yi Zhi, Ze-Rui Xiang, and Jing Kang

Effect of Intercity Train Vehicle Layout on Boarding and Alighting 139
Chen Wang, Weining Fang, Yueyuan Chen, and Caifeng Li
Vehicle-to-Infrastructure and Human-to-Infrastructure Models for Smart Civil Infrastructure Systems ... 147
Sara Mostowfi and William Glen Buttlar

Driving Automation

Online Feedback Control for Driver-Vehicle Interaction in Automated Driving ... 159
Khazar Dargahi Nobari, Franz Albers, Katharina Bartsch, and Torsten Bertram

Automated Driving on the Motorway: A Users’ Perspective on Conditional Versus High Automation 166
Johanna Wörle, Barbara Metz, Aaron Lutz, and Marcus Schmitt

On the Road Again - Explanatory Factors for the Users’ Willingness to Replace Private Cars by Autonomous on-Demand Shuttle Services ... 173
Ralf Philipsen, Teresa Brell, Hannah Biermann, and Martina Ziefe

How Visual Cues on Steering Wheel Improve Users’ Trust, Experience, and Acceptance in Automated Vehicles 186

The Impact of a Biological Driver State Monitoring System on Visual Attention During Partially Automated Driving 193
Alice Stephenson, Iveta Eimontaite, Praminda Caleb-Solly, and Chris Alford

Analysis of Public Transport Ridership During a Heavy Snowfall in Seoul ... 201
Seonyeong Lee, Minsu Won, and Seunghoon Cheon

The Role of Attentional Networks in Secondary Task Engagement in the Context of Partially Automated Driving 211
Rui Lin, Yuchen Xu, and Wei Zhang

Accidents

Analysis of Human Factors Failures in an Incident of Self-driving Car Accident ... 221
Ashraf Labib, Yoskue Nagase, and Sara Hadleigh-Dunn

Assessing the Effectiveness of Augmented Reality Cues in Preventing Rear-End Collisions: A Driving Simulator Study 229
Alessandro Calvi, Fabrizio D’Amico, Chiara Ferrante, and Luca Bianchini Ciampoli
Operational and Geometrical Conditions of Accident Occurrence and Severity at Signalized Intersections ... 237
Abdulla Alghafl and Mohamed Shawky

Effects of a Background Arrangement on Collision-Prediction Accuracy for Approaching Objects .. 247
Yohsuke Yoshioka and Hinako Tanaka

Influence of Passive Fatigue and Take-Over Request Lead Time on Drivers’ Take-Over Performance ... 253
Ali Muhammad Hadi, Qingkun Li, Wenjun Wang, Quan Yuan, and Bo Cheng

Modeling of a Vehicle Accident Prediction System Based on a Correlation of Heterogeneous Sources ... 260
Pablo Marcillo, Lorena Isabel Barona López, Ángel Leonardo Valdivieso Caraguay, and Myriam Hernández-Álvarez

Comfort and Posture

A Theoretical Framework for Occupant Comfort in Future Shared Autonomous Vehicles ... 269
James Jackson and Davide Salanitri

Detection and Classification of Unconscious Movements with Body Pressure Distribution Measurement for Ride Comfort Evaluation in Vehicle Seat ... 276
Junya Tatsuno, Koki Suyama, Hitomi Nakamura, and Setsuo Maeda

An Ergonomic Analysis on the New E-Traysikel ... 283
Nouriét Rocel San Juan, Kristiana Louise Abaa, Daniel Jairoh Alto, Enrico Fernando Jr., and Benette Custodio

Investigation on Driving Posture and Operating Habits of Heavy Truck Drivers ... 291
Junmin Du, Haoshu Gu, Weiyu Sun, Xin Zhang, Huimin Hu, and Yang Liu

Research on the Comfortable Joint Angle for Chinese Automobile Drivers ... 299
Linghua Ran, Yang Gao, Weinan Ju, Chaoyi Zhao, and He Zhao

Vulnerable Road Users

Effects on Driver’s Yielding Behavior of a Pedestrian Collision Warning System in Different Road Environments ... 307
Francesco Bella, Chiara Ferrante, Manuel Silvestri, and Maria Rosaria De Blasiis
Identified Risk Factors Among Truck Drivers Circulating in France... 315
Anabela Simoes, Patricia Delhomme, Blazej Palat, Alexandra Gheorghiu,
Jean-Pascal Assailly, Teodora Stefanova, Giulio Bianchi Piccinini,
Loic Josseran, Gilles Vallet, and Juan Pérez

Applying the Systems Theoretic Accident Model and Process
to Analyze a Downgrade-Truck Collision Caused by a Brake Failure
in Vietnam .. 322
Do Duy Dinh, Nam Hoai Vu, Rich C. McIlroy, Katherine L. Plant,
and Neville A. Stanton

Transport Planning and Infrastructure Design

Effect of Perceived Contrast Enhancing Lens Technology
on Traffic Signal Detection for Color-Deficient Individuals 333
Cameron Lopez, Jeremy Swan, and Jonas Schmidtler

Semi-charmed Life - Willingness to Use and Related Contributing
Factors Regarding Semi-public Charging Infrastructure
for Electric Cars 340
Ralf Philipsen, Imke Haverkämper, Hannah Biermann, Teresa Brell,
and Martina Ziefe

An Investigation of Traffic Noise Levels Around a Major Hospital
in Qatar ... 354
Khaled Shaaban, Abdelrahman Abouzaid, Ahmad Musleh,
and M. Fares Hout

Analysis of Driving Performance Data Considering the Characteristics
of Railway Stations 361
Daisuke Suzuki, Ayako Suzuki, Keiko Shimano, Kazuki Kiyota,
and Yutaka Kakizaki

The Intersection of Spatial Fragmentation and Smart Transport
Planning in Gauteng Province, South Africa: Constraints
and Opportunities 367
James Chakwizira

Research on the Bike-Sharing Service from the Users’ Perspective
and Its Impacts on Their Lifestyles 374
Tianshi Shen

Route Choice, Navigation and Wayfinding

An Evaluation Index System for Wayfinding System and Its Research
Applications: The Case of Beijing Subway Line 1 387
Chuanyu Zou and Guangxin Wang
Empirical Study on Evaluation of Railway Wayfinding System: A Case Study of Shandong Province, China
Chuanyu Zou, Yongquan Chen, and Ziding Chen

Empirical Study on Evaluation of Subway Wayfinding System: A Case Study of Shandong Province, China
Chuanyu Zou, Yongquan Chen, and Jindong Gao

Analysis on the Redesigned Metro Safety Signs Based on Eye Tracking
Guilei Sun, Yanhua Meng, Qin Li, Zijie Wan, and Yaqi Wang

TIAMBIENTA Smart Technologies for the Motor-Home Sector
Giuseppe Lotti, Marco Marseglia, Elisa Matteucci, Margherita Vacca, Irene Fiesoli, Claudia Morea, Alessio Tanzini, Francesco Cantini, Lu Ji, and Eleonora Trivellin

Human Factors in Transportation: Maritime

Preventing Unruly Technologies in Maritime Navigation: A Systems Approach
Katie Aylward, Scott N. MacKinnon, and Monica Lundh

Artificial Intelligence in Maritime Navigation: A Human Factors Perspective
Scott N. MacKinnon, Reto Weber, Fredrik Olindersson, and Monica Lundh

The Anchoring Effect of Technology in Navigation Teams
Vítor Conceição, Carlos Teles, and Joakim Dahlman

Validation of Virtual Command Bridge Training Environment Comparing the VR-Training with Ship Bridge Simulation
Jenny Lauronen, Werner Ravyse, Mirva Salokorpi, and Mika Luimula

Addressing Gaps in Offshore Emergency Egress Training Using Virtual Environments
Jennifer Smith, Mashrura Musharraf, and Brian Veitch

Maritime Resource Management in the Marine Engineering and Nautical Science Education – Attitudes and Implication for Training and Evaluation
Gesa Praetorius, Carl Hult, and Jan Snöberg

Development of a SAGAT Query and Simulator Experiment to Measure Situation Awareness in Maritime Navigation
Hui Xue, Björn-Morten Batalden, and Johan-Fredrik Røds
Assessing Situation Awareness Across Different Submarine Control Room Layouts
Kiome A. Pope, Aaron P. J. Roberts, Daniel Fay, and Neville A. Stanton

Agent-Based Approach to Ship Officer’s Navigational Behavior Modeling for Maritime Traffic Analysis
Hongtae Kim, Younghoon Yang, and Seung-Kweon Hong

Exploiting Contemporary Technology in Flight Deck Design to Improve Flight Safety
James Blundell, John Huddlestone, Charlotte Collins, Steve Scott, Rodney Sears, and Anastasios Plioutsias

Supporting Astronaut Autonomous Operations in Future Deep Space Missions
M. Natalia Russi-Vigoya, Donna Dempsey, Brandin Munson, Alonso Vera, Bernard Adelstein, Shu-Chieh Wu, and Kritina Holden

Habitability Study on Space Station Colour Design
Ao Jiang, Xiang Yao, Irene Lia Schlacht, Giogio Musso, Tang Tang, and Stephen Westland

Human Factors in Transportation: Aviation and Space
Reiner Suikat, Sebastian Schier-Morgenthal, Nils Carstengerdes, Yves Günther, Sandro Lorenz, and Florian Piekert

Pilot Tailored Helicopter Systems
Christian A. Niermann

Operational Complexity in Performance-Based Navigation Arrival and Approach Flight Operations
Divya Chandra, Andrea Sparko, Andrew Kendra, and Janeen Kochan

Towards a Glossary of Aviation Communication Factors
Simon Cookson

An Approach to Aerospace Design Integrating Crew Resource Management in Operational Environments
Tiziano Bernard, William A. Tuccio, Sebastien Boulnois, Aleksandar Tasic, and Lucas Stephane

Helicopter Noise Footprint Depiction During Simulated Flight for Training
Anna C. Trujillo, Eric Greenwood, and Daniel R. Hill
Predictive Safety Through Survey Interviewing - Developing a Task-Based Hazard Identification Survey Process in Offshore Helicopter Operations .. 562
Felipe A. C. Nascimento, Arnab Majumdar, and Washington Y. Ochieng

Aircraft Accommodation for People Living with Obesity: A Call for a Review of Existing Seating, Safety and Emergency Regulations ... 570
Kayla Daigle, Dawson Clark, Chantal Trudel, and Shelley Kelsey

Urban Air Mobility Fleet Manager Gap Analysis and System Design ... 576
Richard Mogford, Dan Peknik, Jake Zelman, and Cody Evans

Investigation of Commercial Aircraft's Cargo Luggage Dash Impact on Passenger During Emergency Evacuating ... 583
Li Wen Wu

Research on the Comprehensive Evaluation System of Cabin Comfort of Civil Aircraft ... 590
Jian-Ping Chen, Jin Wang, Jin-Yi Zhi, and Li-Li Zhang

The Importance of Human Factors When Designing Airport Terminals Integrating Automated Modes of Transit 597
Seth Gatien, John Gales, Ata Khan, and Ariel Yerushalami

The Flight Scenarios Development Method for Cockpit Design and Evaluation of Civil Aircraft ... 603
Hongyu Zhu, Hua Meng, Shasha Lu, and Guangyu Bao

The Effect of Anticipatory Conditions on Pilot Performance in Encountering Stall: A Flight Simulator Study 610
Meilisa Hajriani and Hardianto Iridiastadi

Criteria Indicators of the Consistency of Air Traffic Controllers’ Preferences on a Set of Characteristic Errors 617
Oleksii Reva, Volodimir Kamyshyn, Andrii Nevynitsyn, Valerii Shulgin, and Serhiy Nedbay

High-Level Review Principles for Human-Machine Interface Design of Civil Aircraft Flight Deck ... 624
Fei Li and Kaiwen Chen

Author Index .. 633
Habitability Study on Space Station Colour Design

Ao Jiang1, Xiang Yao2, Irene Lia Schlacht3, Giogio Musso4, Tang Tang1, and Stephen Westland1

1 University of Leeds, Leeds, UK
2 Xiangtan University, Xiangtan, China
3 HMKW University Berlin, ILEWG at ESA ESTEC, Berlin, Germany
4 Thales Alenia Space Italy, Turin, Italy

Abstract. Various stressors such as microgravity, vibration, radiation, restriction, and isolation in manned spaceflight environments can cause a variety of negative psycho-physiological effects. At the emotional level, for example, they may provoke anxiety and depression, which affects the astronauts’ operational efficiency and overall mission performance. The colour design of a spaceflight environment could positively affect a person’s emotional level and thus help to counteract such negative psycho-physiological effects. This paper presents a new model for validating the colour design of spaceflight environments at the psycho-physiological and emotional level in order to increase the quality of emotional habitability and support efficiency and performance. Psycho-physiological experiments were tested on six coloured light in a dedicate physical mockup of a specific spaceflight environment. In particular the sanitary area of the space station was used as a case study. As result the highest quality of emotional habitability was achieved in a yellow coloured light environment, that is very close to the natural solar condition. Note: In order to support the confidentiality in this paper is not mentioned the name of the space station.

Keywords: Emotional habitability · Colour design · Human factors · Space station sanitary area

1 Introduction

1.1 Space Colour Design Based on Emotional Habitability

In any space environment, the amount of system design that takes into consideration human factors, i.e., the habitability factor of the environment, is very low. To support the performance of long-term space missions, increasing emotional habitability is a prerequisite [1]. The first step in human factors research based on human-centred design is user analysis, where gathering output from people who will be using the product or service is an important part. In the space environment, the environmental lighting requirements and the colour matching of the visual space in the cabin are important factors affecting emotional habitability. Proper consideration of these factors

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
https://doi.org/10.1007/978-3-030-50943-9_64
in the design can well improve people’s psychological identity and stimulate work efficiency; otherwise, they will feel uncomfortable, their work efficiency will at least be reduced, and in severe cases they will even make operational errors and face safety problems [2]. Especially due to the relatively small space of the passenger cabin and the special environment, the design of the cabin colour will also affect the astronauts’ space positioning, information acquisition and judgement, and psychological feelings. Therefore, it can be said that the reasonableness of colour matching design in the cabin layout is related to human ergonomics and safety [3].

1.2 Case Study: Sanitary Area of the Space Station

When mankind envisions building a permanent human habitat in space, it is necessary to consider constructing various functional guarantee systems with stable, reliable and safe performance in each functional section of the habitat. The space sanitary area system is the basic guarantee system for fulfilling the survival needs of astronauts in each functional division. It is closely related to the astronauts’ life, functional safety, physical and mental health, as well as to efficient work. According to relevant reports published by NASA [4], the basic needs system for astronauts in future space habitats must be the subject of a reliable, stable and long-term target study. Due to the sanitary area’s importance in supporting the basic survival guarantee for astronauts, the high degree of matching with humans, the important features of its complex functions, multiple technical interfaces and strong systemicity, the sanitary area system must have spatial emotional habitability. According to related anecdotal reports published by the Russian (former Soviet) space agency and NASA and relevant interviews with astronauts, the design and usability of the space station sanitary area are not good, as shown in Fig. 1. Complaints include: 1. The space is small and closed; 2. colour and light are unfavourable for astronauts to operate in; 3. the use of hardware is complicated and fault tolerance is low; 4. the location and shape of the fixing device and the handrail device mean that they cannot be used well [5]. These related factors lead to abnormal discharge, causing basic physiological disorders such as constipation, and even serious problems such as psychological and mental depression, insomnia, headaches and worsening interpersonal and social relationships [6].

Fig. 1. Existing U.S. and Russian space station and aerospace laboratory sanitary areas.
2 Method

2.1 Research of the Colour Perception Model Based on Emotional Habitability

The influence of colour factors on astronauts in terms of emotional habitability mainly originates from physiology and psychology. The channels for transmitting human colour vision information are light sources, coloured objects, eyes and brain [6]. These four elements not only make people feel colours, but also allow them to accurately analyse colours. If one of these four influential factors is inaccurate or biased, the astronaut cannot accurately analyse the effects of light and colour. The radiation effect of light sources and the reflection effect of objects belong to the discipline of opto-electronic physics. Therefore, colour perception is a concentrated reflection of coloured light, the human visual perception system and a person’s mental state. Therefore, making use of the physiological and psychological processing involved in colour perception, a colour perception model based on emotional adaptation was constructed, as shown in Fig. 2.

![Colour perception model for spatial emotional habitability](image)

Fig. 2. Colour perception model for spatial emotional habitability

2.2 Development of the Mockup to Test the Sanitary Area

To investigate how to increase the quality of emotional habitability by selecting the best colour design configuration (Fig. 3), a physical mockup of the space station was built (Fig. 4). The mockup included a simulated environmental factor system, a light control system, and a data monitoring and acquisition system. The simulated environmental factor system mainly simulated the temperature and humidity environment of the space station’s sanitary area, the noise environment, and the closed environment of the sanitary area to ensure the reliability of the test.
To better understand and simulate the user interaction, interview with specialists, videos and pictures of the ISS’s sanitary area operated by the NASA’s astronaut Sunita Williams’ as well as interaction improvement from NASA and ROSKOSMOS (reported on paragraph 1.2) were analysed and implemented in this study [7].

2.3 Determination of Colour Specimens Based on Colour Matching Standards

Table 1. CIE LAB colour attributes of 6 colours using the CIE light source D65/1964 colourimetry observer combination [8]

<table>
<thead>
<tr>
<th>Colour centre</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>C_ad</th>
<th>H_ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Grey</td>
<td>61.1</td>
<td>−3.2</td>
<td>3.2</td>
<td>4.5</td>
<td>135</td>
</tr>
<tr>
<td>2 Red</td>
<td>41.0</td>
<td>33.2</td>
<td>25.5</td>
<td>41.9</td>
<td>38</td>
</tr>
<tr>
<td>3 High-chroma orange</td>
<td>60.3</td>
<td>33.0</td>
<td>64.3</td>
<td>72.2</td>
<td>63</td>
</tr>
<tr>
<td>4 Yellow</td>
<td>84.1</td>
<td>−6.7</td>
<td>50.4</td>
<td>50.9</td>
<td>98</td>
</tr>
<tr>
<td>5 High-chroma green</td>
<td>56.0</td>
<td>−45.7</td>
<td>5.7</td>
<td>46.1</td>
<td>173</td>
</tr>
<tr>
<td>6 Blue</td>
<td>37.0</td>
<td>−1.3</td>
<td>−27.9</td>
<td>28.0</td>
<td>267</td>
</tr>
</tbody>
</table>

Six CIE LAB colours were investigated in this study according to the International Space Station (ISS) space colour matching standard SSP 41000 designed to support the best psycho-physiological health conditions in space missions. The colours were distributed inside the mockup as coloured lights. The six colours tested were grey, red, high-chroma orange, yellow, high-chroma green and blue. Table 1 lists the CIE LAB values for the selected colours. Six coloured light bulbs (Fig. 4) were used to illuminate the environment of the simulated space station sanitary area.
2.4 Establishment of Test Plan and Countermeasures

During the test the participants were asked to keep their mental state stable, their attention needed to remain focused on the system interaction. The colour changes in the simulated environment were only used for stimulating the physiological state of the participants, which did not affect their test activities. The test set-up was as follows:

A. 40 participants (28 male, 12 female), 30–40 years old, with strong physiques and good physical fitness. They had regular daily routines and did not drink or take drugs. B. Six 18 W coloured light bulbs (with six different colours of light: grey, red, high-chroma orange, yellow, high-chroma green and blue; the six colours’ RGB values were all within the standard value range used by the International Illumination Commission for colour discrimination). At the same time, this study simulating the system environment of the space station sanitary area used the CAPTIV-L7000 human factor data acquisition system to measure the participants’ heart rate, breathing rate and myoelectric signals.

C. The test process comprised the following steps:

C1. The participants needed to be fully rested the day before the experiment, had not performed any bowel movements and maintained a calm and good condition. They were made familiar with the test environment and the operation and use procedures of the sanitary area before the test started in order to eliminate any effects of changes in their psychological state in an unfamiliar environment.

C2. First, experiments were performed in a natural indoor bathroom environment, that is, in a spacious and bright bathroom.

C3. After resting for five minutes, the participants entered the simulated test environment to perform the test. Using the sequence of grey, red, high-chroma orange, yellow, high-chroma green and blue, the participants switched the coloured light bulb to a different colour every ten minutes, i.e., the environment colour of the closed simulated sanitary area remained the same for a period of ten minutes each. While switching the colour environment, the participants rested for five minutes. Then they strictly followed the sanitary area operation and use procedures of the “Astronaut Biographies Home Page” published by NASA and the European Aviation Authority. Before entering the environment of the simulated space station, T-Sens breathing frequency sensors and T-Sens heart rate sensors were attached to them. A Sens

Fig. 4. Colour design test of the entrance of the mockup of the space station’s sanitary area (picture of the interior were forbidden for ethical reason)
surface EMG sensor was also connected to each participant. Once they were ready, this physiological data was collected and stored via the wireless data logger T-log.

C4. During the whole experiment, the participants were relaxed, simulated the operation procedures of the space station sanitary area and used the sanitary area normally.

3 Result

3.1 Method for Processing Physiological Signal Data

The differences in human physiological states in different environments were compared by analysing the Euclidean distances of the physiological signal data in the different environments. Specifically, the Euclidean distance was calculated for the 40 groups of physiological signals in the simulated experimental environment with grey, red, high-chroma orange, yellow, high-chroma green and blue light, and for the 40 groups of physiological signals in the natural indoor environment. Due to space limitations, only four participants’ signal acquisition results are listed in this article, as shown in Figs. 5, 6 and 7.

3.2 Data Processing Results and Analysis

The experimental results show that in the simulation experiment environments where blue, high-chroma orange, red and high-chroma green light was used, the participants’ physiological signals were farther away from their physiological signals in the natural bathroom; that is, the difference was greater. In the grey light simulation experiment environment, their physiological signals were close to the Euclidean distance of their physiological signals in the natural bathroom; that is, the difference was small. In the yellow light simulation experiment environment, the Euclidean distance between their physiological signals and those in the natural bathroom was the closest; that is, the difference was the smallest. This shows that in a closed and narrow simulation...
experiment environment, choosing a yellow environment would be of great help to the mental state of the crew when using the sanitary area. Moreover, yellow is the light colour that resembles the natural environmental solar light the closest.

4 Conclusion

This project involves the study of colour perception models based on emotional habitability applied to space station design. Through the application of a model to the study and evaluation of physiological data and subjective feelings, six different referential light colours were tested in a physically simulated environment based on the space station. In particular, considering the key relevance for supporting the basic survival needs, the environment of the sanitary area was selected as a case study. The results show that the highest quality of emotional habitability was achieved in a yellow coloured light environment, which is the light colour that resembles the natural environmental solar light the closest.

A more profound future study could pay particular attention to three factors: 1. the selection of the participants and the size of the sample to enable a better match of the physical quality and psychological characteristics of the participants with those of astronauts. 2. the influence of microgravity on astronauts’ use of sanitary areas and the surrounding environment, could be tested in the future on ISS and parabolic flight as this could impact the physiological signals and subjective feelings. 3. Finally the colour sample variety could be implemented to increase the quality of the results.
Acknowledgements. This work is supported by a scholarship from the China Scholarship Council and the University of Leeds (No. 201908430166), a scientific research project of the Hunan Provincial Department of Education (No. 19B568), as well as a research project of the China Astronaut Research and Training Centre (No. 2018111400419).

References